Impact of repeat percutaneous coronary interventions for chronic total occlusion following

previously failed attempts from the analysis of the Japanese CTO Expert Registry

Makoto Sekiguchi
Etsuo Tsuchikane
Toshiya Muramatsu
Koichi Kishi
Makoto Muto
Yuji Oikawa
Tomohiro Kawasaki
Tsutomu Fujita
Yuji Hamazaki
Hisayuki Okada
Rvohei Yoshikawa

Fukaya Red Cross Hospital Toyohashi Heart Center Tokyo General Hospital Tokushima Red Cross Hospital Saitama Prefecture Cardiovascular and Respiratory Center The Cardiovascular Institute Shin-Koga Hospital Showa Luhirestily School of Medicine Seirei Hamamatsu General Hospital Sainda City Hospital

I, Makoto Sekiguchi, DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.

Introduction / Aim

- Chronic total occlusion (CTO) percutaneous coronary intervention (PCI) can be challenging to perform with variable success rates, depending on operator experience and expertise.
- Previous failed attempt of CTO-PCI has been associated with lower procedural success rates and is
 part of the Japanese Chronic Total Occlusion (J-CTO) score that was developed to predict the
 likelihood of successful guidewire crossing within 30 minutes.
- The aim of this study is to investigate the impact of repeat CTO-PCI by highly skilled operators following previous failed attempt.

Methods

- The Japanese Board of CTO Interventional Specialists has develop a prospective, nonrandomized registry of patients undergoing CTO-PCI performed selected highly experienced Japanese specialists.
- From 2014 to 2016, the registry included 4177 consecutive CTO-PCI cases. The overall procedure success rate of CTO-PCI was 88.9%. A previous failed attempt had been performed in 844 patients (20.2%).
- We compared the baseline patient and angiographic characteristics, procedural and clinical results between first-attempt PCI and re-attempt PCI. In addition, we analyzed unsuccessful factors of reattempt CTO-PCI with univariate and multivariate analysis.

Japanese CTO PCI Expert Registry

- The Japanese Board of CTO Interventional Specialists was established in 2013 to accumulate quantitative and reliable data to identify issues such as stagnation in the development of CTO-PCI techniques and to compare with other databases of foreign countries.
- Japanese CTO PCI Expert Registry started a database of CTO-PCI performed by certified expert physicians who have a certain level of CTO-PCI skills from JAN/2014
- Patients are enrolled by certified expert operators.
- Procedure success is adjudicated by a Core-lab

Pts. Enrollment	Jan.2014~
Participants as of JUN.2016	45 of Japanese Expert physicians
Criteria for Participants	 More than 300 cases of experience of CTO-PCI
	 More than 50 cases of CTO PCI per year
	 Recommendation from two steering committee member
Core lab.	Adjudication of Indication and Procedure Success
Organization	Japanese Board of CTO interventional specialist
Chairman	Etsuo Tsuchikane (initiated by Osamu Katoh and Kazuaki Mitsudo)

Table 1 Baseline Patient Characteristics and Baseline Angiographic Characteristics

	0	Overall 18 attempt		Po attempt		n Value	
	(N =	4177)	(N	(N = 3333)		(N = 844)	
Ago yrr	66.9	+ 10.9	67	2 + 10.0	65.2	(1 = 344)	
BMI kg/mm	24.7 + 4.0		24	24.6 + 3.7		25.1 ± 4.7	
IVEE	24.7 <u>+</u> 4.0		54	7 + 13 0	56.0	+ 12.2	0.009
aGER	54.9 + 12.9		63	54.7 ± 13.0		50.0 <u>+</u> 12.2	
Male	3583	(85.8)	2844	(85.3)	739	(87.6)	0.098
Hyportoncion	2256	(79.0)	2044	(77.7)	670	(70.7)	0.038
Dyclinidomia	2220	(77.5)	2580	(76.1)	706	(92.0)	<0.001
Dishotor	1005	(//.J) (AE 1)	1407	(45.0)	200	(46.1)	0.427
Diabetes	2005	(43.1)	202	(43.0)	62	(40.1)	0.437
Current cmoking	205	(0.3)	1927	(54.0)	456	(54.2)	0.212
OM	2203	(54.7)	1620	(49.0)	450	(54.2)	0.006
Drine CARC	2088	(30.0)	1050	(49.0)	456	(54.5)	0.008
Prior CABG	2769	(7.4)	1024	(7.0)	944	(0.7)	<0.001
Number of diseased versels	2700	100.37	1924	(0.10)	044	(100.0)	<0.001
Single VD	1972	(47.2)	1490	(44.5)	496	(57.7)	40.001
Double VD	1272	(29.5)	1460	(29.8)	100	(28.1)	
Triple VD	921	(10.7)	722	(21.7)	237	(11.6)	
IMT + multiple VD	154	(2.7)	122	(4.0)	21	(2.5)	
Target vessel	134	(3.7)	155	(4.0)	21	(2.5)	<0.001
IAD	1229	(21.9)	1069	(22.1)	260	(20.9)	~0.001
LCX	715	(17.2)	620	(19.6)	200	(11.2)	
IMT	17	(0.4)	12	(0.4)	55	(0.6)	
RCA	2116	(0.4)	1622	(49.0)	194	(67.2)	
Suntax como	16 3	(30.0)	1032	2+9.0	404	(37.3)	<0.001
LCTO ccoro	1.02	+ 1 15	1.6	17.2 + 9.0		2.86 ± 1.02	
CTO longth > 20mm	2401	(57 5)	1006	(56.6)	£10	(61.1)	0.060
Losion calcification	2401	(57.5)	1675	(50.0)	470	(01.1)	0.000
Testuraity of CTO losion	2145	(32.0)	701	(30.3)	470	(39.3)	40.001
Morphology of provingal cap	555	(23.0)	721	(21.7)	230	(20.2)	0.016
Norphology of proximal cap	011	(21.0)	724	(21.7)	107	(22.2)	0.016
Na sturne	700	(10.2)	724	(10.2)	167	(10.1)	
No stump	2457	(10.5)	1079	(10.2)	101	(19.1)	
Tapered / tunnel	2457	(1.0)	1978	(0.7)	4/9	(30.8)	
Unclear	41	(1.0)	24	(0.7)	1/	(2.0)	0.084
In-stent occusion	2022	(12.6)	445	(15.5)	93	(11.0)	0.084
Vessel diameter < 3.0mm	2022	(07.0)	12201	(06.5)	300	(07.2)	0.555
Side branch at proximal cap	1514	(50.2)	1226	(40.6)	200	(54.2)	0.101
Proximal tortuosity	2074	(49.7)	1051	(49.6)	423	(30.2)	0.756
Collectored filling	1057	(40.6)	1560	(41.4)	517	(57.0)	0.045
Consterior mining	2084	(40.0)	1621	(40.0)	45.2	(52.7)	0.008
Contralateral	2084	(49.9)	1051	(49.0)	455	(10.0)	
Ipsilateral Deth	1544	(15.0)	460	(15.8)	84	(10.0)	
Nese	1517	(30.3)	1215	(36.5)	302	(35.8)	
None	29	(0.7)	25	(0.8)	4	(0.5)	0.000
Collateral filling grade	222	(5.5)	202	(6.4)	20	(0, 0)	0.008
	233	(5.6)	203	(6.1)	30	(3.6)	
	1630	(39.0)	1306	(39.2)	324	(38.4)	
	2312	(55.4)	1822	(54.7)	490	(58.0)	
Unclear	2	(0.1)	2	(0.1)	0	(0)	

Table 3. Multivariate Analysis Investigating Possible Predictor of Failed Re-attempt PCI

		Inivariate Analysis			Multivariate Anal	ysis
Reattempt (N=844)	Success (N=711)	Failure (N=133)	p value	OR	95%CI	P.VALUE
Dialysis	4.0 (5.8)	19 (14.7)	0.001	1.18	0.49-2.85	0.71
High J-CTO score (3-5)	410 (59.4)	98 (76.0)	< 0.001	1.66	0.50-5.54	0.41
Occlusion length (>20mm)	412 (59.7)	81 (69.0)	0.049	1.19	0.48-2.99	0.7
Diabetes	309 (44.9)	70 (54.3)	0.028	0.15	0.01-2.73	0.2
Tortuosity of CTO lesion	175 (25.4)	57 (44.2)	<0.001	1.78	0.73-4.33	0.2
Severe calcification	51 (7.4)	26 (20.2)	< 0.001	7.83	2.13-28.80	0.002
Moderate calcification	96 (13.9)	21 816.3)	<0.001	2.36	0.65-8.49	0.19

Table 2 Procedural and Clinical Results

	0\ (N =	verall = 4177)	1** (N	attempt = 3333)	Re-a (N =	ttempt = 844)	p Value
GW success	3847	(92.1)	3094	(92.8)	753	(89.2)	0.002
Technical success	3757	(88.9)	3028	(90.8)	729	(86.4)	<0.001
Procedural success	3614	(86.5)	2922	(89.7)	692	(84.3)	<0.001
Procedure time, min	158.	1 <u>+</u> 88.9	150	.5 <u>+</u> 86.6	188.5	5 <u>+</u> 91.5	<0.001
Contrast volume, ml	222.5	<u>+</u> 102.6	217.	6 <u>+</u> 100.0	242.2	<u>+</u> 110.1	<0.001
In-hospital death	12	(0.3)	12	(0.4)	0	(0)	0.141
Myocardial infarction	47	(1.1)	30	(0.9)	17	(2.1)	0.001
Acute stent thrombosis	7	(0.2)	5	(0.2)	2	(0.2)	0.634
Stroke	12	(0.3)	7	(0.2)	5	(0.6)	0.073
Emergent CABG	2	(0.1)	2	(0.1)	0	(0)	1
Emergent PCI	7	(0.2)	5	(0.2)	2	(0.2)	0.634
Coronary perforation	190	(4.5)	135	(4.1)	57	(7.0)	0.001
Cardiac tamponade	17	(0.4)	13	(0.4)	4	(0.5)	0.762
Complication of puncture site	63	(1.5)	51	(1.6)	12	(1.5)	1
CIN	246	(5.9)	193	(5.8)	53	(6.3)	0.568

Results

- As compared with the first attempt PCIs, the re-attempt PCIs had higher Japanese CTO score (1.68±1.1 vs 2.86±1.0, pc.0.001), and were more likely to have renal failure on dialysis (5.1% vs 7.0%, p=0.042) and to undergo recanalization attempts using the bidirectional approach (40.1% vs 67.8%, pc.001).
- Procedure time (150±87 vs 188±92 min, p<0.001) and contrast volume (218±100 vs 242±110 ml, p<0.001) were bigger in the re-attempt PCIs.</p>
- The rate of myocardial infarction (0.9% vs 2.1%, p=0.01) and coronary perforation (4.1% vs 7.0%, p=0.001) were higher in the re-attempt PCIs. However, there was no significant difference of the rate of cardiac tamponade, emergent PCI and CABG.
- The technical (90.8% vs 86.4%, p<0.001) and procedural (89.7% vs 84.2%, p<0.001) success rate were lower in the re-attempt PCIs. However, the technical success rate in the prior failure group of this study was higher, compared with the retry cases of Multicenter CTO Registry in Japan which was reported nine years ago and developed J-CTO score system (86.4% vs 68.5%).
- From the analysis of repeat CTO-PCI procedure with a prior failed attempt, compared with the success group (711 patients), the failure group (133 patients) were more likely to have diabetes (44.9% vs 54.3%, p=0.028) and renal failure on dialysis (5.8% vs 14.7%, p=0.001) and higher J-CTO score (2.81+1.0 vs 3.15+1.0, p=0.001).
- The success rate of retrogradely guidewire crossing through the collateral channel was higher in the success group of repeat CTO-PCI (84.2% vs 55.6%, p<0.001). Severe lesion calcification was a strong predictor of the failure of repeat CTO-PCI (0R=7.83, 95% Ci=2.13-28.80, p=0.002).

Conclusions

- The repeat CTO-PCIs in our registry are associated with patient characteristic and angiographic complexity, longer procedure time and high contrast volume.
- The success rate of repeat CTO-PCI by highly skilled operators following previously failed attempt may be acceptable.
- The CTO lesion with severe calcification remains a difficult problem.